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Figure 1: A two-projector display after both projectors have been moved (left) and after roughly ten seconds of operation (middle,right).

ABSTRACT

We present a novel calibration framework for multi-projector dis-
plays that achieves continuous geometric calibration by estimating
and refining the poses of all projectors in an ongoing fashion dur-
ing actual display use. Our framework provides scalability by op-
erating as a distributed system of “intelligent” projector units: pro-
jectors augmented with rigidly-mounted cameras, and paired with
dedicated computers. Each unit interacts asynchronously with its
peers, leveraging their combined computational power to coopera-
tively estimate the poses of all of the projectors. In cases where the
projection surface is static, our system is able to continuously refine
all of the projector poses, even when they change simultaneously.

Keywords: Projector displays, continuous calibration.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality;

1 INTRODUCTION

Projection-based displays have long been used in the creation of
large, immersive environments for virtual reality (VR), simulation,
and training. These displays have become increasingly useful due
to advancements in automatic calibration that allow the images of
multiple projectors to be registered together accurately on complex
display surfaces, while simultaneously compensating for the sur-
face shape. While these techniques have been shown to be accurate
and robust, the geometric aspects of the calibration are typically
only computed prior to display use. However even for “fixed” con-
figurations of projectors, physical perturbations, electrical changes,
and even gravity can cause the apparent or actual projector poses to
change over time, decreasing display quality.

Our goal is a system that continually and automatically adjusts
to even the slightest change in projector poses, while the system is

∗tmjohns, welch, fuchs, elaforc, herman@cs.unc.edu

in use. Such continuous pose estimation should increase the robust-
ness of projection-based displays, while also offering new flexibil-
ity. For example, the most suitable positioning of projectors may
vary between applications due to certain field-of-view or spatial
resolution requirements. In these situations it might be desirable
to deliberately reposition the projectors without having to interrupt
display use to perform a re- calibration of the entire system.

In this paper, we present a novel technique allowing the poses of
multiple projectors to be estimated continuously during actual dis-
play use. Our framework is designed around “intelligent” projec-
tor units (IPUs): a projector augmented with two rigidly-mounted
cameras, and paired with a dedicated computer. (See Figure 2.)
The IPUs operate in a distributed fashion, each cooperating with its
neighbors to continuously estimate all of the poses. In cases where
the projection surface is static, our system continuously refines all
of the poses, even when they change (IPUs move) simultaneously.

2 RELATED WORK

Our work is related to a number of approaches that have been de-
veloped to deal with various aspects of continuous calibration in
projection-based displays. Yang and Welch [18] describe how ap-
plication imagery projected at display time can be used to auto-
matically estimate the shape of the display surface and account for
changes in its shape over time using a Kalman filter-based frame-
work. Cotting et al. [4] describe how the shape of the display sur-
face can be estimated over time by embedding imperceptible cali-
bration patterns into projected imagery.

Raij and Pollefeys [14] and Raskar et al. [15] describe techniques
to automatically calibrate clusters of projectors displaying onto pla-
nar display surfaces. PixelFlex [17, 13] provided a tiled display sys-
tem for planar and near-planar surfaces that allowed each projectors
image to be easily and quickly repositioned to create new display
configurations that could be calibrated within minutes. Bhasker et
al. [2] describes a distributed approach to automatic calibration of
multi-projector tiled displays that is truly scalable.

Our work is most closely related to techniques that use camera
image measurements to recalibrate projectors at display time with-
out interrupting the projection of user imagery. In [5], Cotting et
al. describe how their imperceptible pattern embedding approach



can be used to recalibrate projectors in a multi-projector display
that have been moved. Johnson and Fuchs [8] provide a method for
continuously estimating the pose of a single projector using only
application image features, while Zhou et al. [19] describe how ap-
plication image features can be used to continuously calibrate pro-
jectors in a multi-projector display. In [20], Zollman et al. present a
hybrid technique that can compensate for small changes in display
configuration using optical flow, and will resort to active structured
light projection when the optical flow becomes unreliable.

3 SYSTEM DESIGN AND GOALS

In this section, we describe the philosophy behind the design of
our system, and describe how the use of “intelligent” projector
units (projectors augmented with two rigidly-mounted cameras, and
paired with dedicated computers) supports our design goals.

3.1 Rapid Projector Recalibration During Display Use

The primary goal of our overall work is to support rapid set-up and
reconfiguration of multi-projector displays. In this paper, we focus
on the goal of achieving rapid projector recalibration during actual
display use by continuously estimating the poses of all projectors.

In order to estimate changes in projector pose over time, the use
of an auxiliary measurement device is required. We have chosen
to use cameras for this purpose due to the inherent duality between
cameras and projectors—both use lenses to direct light, but one for
the purpose of sensing and the other for the purpose of display. The
utility of such combinations of projectors and cameras is described
in a variety of previous work [2, 15, 4, 19].

We have designed our system to be flexible enough to recover the
poses of all projectors even in the case that all projectors have been
moved. We believe this functionality is necessary because even in
displays where projectors are not intentionally moved, the poses
of all projectors are likely to change slightly over time. Previous
work [19, 5] solves this problem only partially by using projector-
camera pairs with known calibration as references in re-estimating
the poses of other projector-camera pairs that have been moved.
This approach fails when all projector-cameras pairs have been
moved, and it is not clear how errors may accumulate over time as
devices are moved, recalibrated, and then used to recalibrate other
devices.

In order to achieve the goal of allowing any and all projectors to
be moved simultaneously, we introduce the concept of using known
display surface geometry as an additional reference in estimating
projector pose. This allows us to eliminate the distinction between
calibrated and uncalibrated projectors and instead refine the calibra-
tion of all projectors continuously over time. In our current system
we assume that the geometry of the entire display surface is known
apriori and does not change, but plan to relax these constraints in
future work.

Another important goal of our design is to allow continuous pro-
jector pose estimation to take place without affecting the imagery
projected by the user. While techniques for embedding impercepti-
ble patterns [4, 5, 6] into projected imagery ensure a steady supply
of features that can be used as camera image measurements, these
techniques are currently limited in the types of projectors that can
be used, i.e. DLP or stereo, and the embedding process requires
that some amount of image quality be sacrificed. For this reason,
we have chosen to use the projected imagery itself as a source of
camera image features that can be used to estimate projector pose
during display use.

3.2 Distributed Cooperative Operation

In order to be useful in large displays with many projectors, contin-
uous calibration approaches must be scalable. As described in [2]
a distributed calibration methodology has far greater potential for

scalability and fault tolerance than more traditional centralized ap-
proaches where all calibration data is aggregated and processed on
a single machine.

Our design allows for scalability by pairing computation with
each projector to create a number of self-contained, intelligent units
that act in a cooperative fashion, leveraging their combined compu-
tational power to estimate the pose of each projector through the
exchange of information over a local network.

3.3 Intelligent Projector Units
Intelligent Projector Units (IPUs) are the basic building blocks of
our display. An IPU, as seen in Figure 2, consists of a projector
augmented with rigidly-mounted cameras and computation that in-
cludes network capability. While the computation component cur-
rently consists of a separate PC, we have future plans to fully inte-
grate the computation with the rest of the unit.

Figure 2: An Intelligent Projector Unit.

4 DISTRIBUTED COMPUTATIONAL FRAMEWORK

In this section, we describe our distributed computational frame-
work for continuous calibration of projector pose in multi-projector
displays.

4.1 Assumptions
1. The internal calibration of each IPU is fixed and known. (The

internal calibration consists of the intrinsic parameters of the
projector and both cameras, such as focal lengths and princi-
pal points, as well as the relative positions and orientations of
all three devices.)

2. The geometry of the display surface is static and known.

3. Projectors remain mostly stationary, however they may drift
over time or occasionally be moved by the user.

4.2 General Approach
In the distributed computational framework we develop here, each
IPU is tasked with the responsibility of estimating its own pose. In
general, the pose of a camera or projector has six degrees of free-
dom that correspond to its position and orientation. The three po-
sition parameters x,y,z represent the device’s center-of-projection,
while the three rotational parameters ψ,θ ,φ represent the orienta-
tion of its principal axis.

When the internal calibration of an IPU is known (assumption
1 in Section 4.1) knowledge of the pose of any one of the optical
devices (projector or camera) that are part of the IPU is sufficient



to completely constrain the pose of all three devices. Taking advan-
tage of this property, we arbitrarily choose one of the two cameras
of an IPU to be its primary camera, whose pose will be continu-
ously estimated, and designate the other its secondary camera. We
define the pose of an IPU to be equivalent to the pose of its primary
camera. The pose estimate of the IPU’s primary camera can then be
transformed into a pose estimate of its projector, which is needed to
warp its projected imagery to register it to the other projectors and
compensate for the shape of the display surface.

In our framework, each IPU estimates the pose of its primary
camera using image (feature) correspondences between cameras.
An image correspondence between two cameras consists of a pixel
location in the image of each device that both correspond to the
same 3D point in the scene. In general, image correspondences be-
tween cameras are a function of the intrinsic and extrinsic calibra-
tion of both devices and the geometry of the scene that is observed.

4.2.1 Local and Remote Correspondences
In continuously estimating the pose of its primary camera, each IPU
makes use of two types of image correspondences. The first type
consists of correspondences between its primary and secondary
cameras. We refer to these as local correspondences since each
IPU can obtain these correspondences independently of the other
IPUs. The second type of correspondence used in our system is be-
tween an IPU’s primary camera and the primary cameras of other
IPUs. We refer to these as remote correspondences.

Figure 3: The pose of an IPU Ul is constrained by image correspon-
dences between its primary and secondary cameras Cp

l and Cs
l by

forcing the structure of the display surface that is currently observed
(blue points) to coincide with the known display surface model.

Both local and remote correspondences produce constraints on
an IPU’s pose. As seen in Figure 3, local correspondences constrain
the structure of the display surface that is currently observed by an
IPU since its primary and secondary cameras are calibrated as a
stereo camera pair. The pose of the IPU is then constrained by
requiring that the currently observed surface geometry (shown as
blue points) match the known model of the display surface.

Remote correspondences also provide constraints on the pose of
an IPU. In this case, correspondences are measured between the
primary camera Cp

l of an IPU Ul and the primary camera Cp
r of

Figure 4: The pose estimate of IPU Ur is used as a reference in
estimating the pose of IPU Ul via image correspondences between
their primary cameras.

another IPU Ur. To the extent that the pose of Cp
r is known, it

can act a reference in computing the pose of Cp
l as illustrated in

Figure 4. Using the estimated pose of Cp
r , each correspondence

can be back-projected into a ray that, when intersected with the
known display surface model, produces a point on the surface. The
resulting set of surface points and their measured positions in Cp

l ’s
image can be used to estimate the pose of Cp

l to the extent that the
pose estimate of Cp

r is accurate.

4.3 Kalman filter-Based Estimation
While various geometric algorithms could be used to estimate the
pose of an IPU using local and remote correspondences, we choose
to use a Kalman filter [9] for this purpose. There are several advan-
tages to this approach. First, temporal filtering allows the effects
of measurement noise on pose estimates to be mitigated. Without
temporal filtering, measurement noise can cause small variations in
the estimated pose over time, ultimately resulting in small changes
in the projected imagery that are quite distracting to the viewer.
Second, with the Kalman filter it is straightforward to account for
uncertainty in the pose estimates of other IPUs for which remote
correspondences have been measured. This is due to the fact that
in addition to estimating the state of the process, the Kalman filter
also estimates the state error covariance—an indication of uncer-
tainty in the state estimate due to the failure of measurements to
fully constrain a solution.

4.3.1 Filter Operation
In our system, each IPU maintains a Kalman filter that processes the
local and remote correspondences obtained at each time-step and
produces a filtered pose estimate. Because perspective projection is
non-linear, we use an extended Kalman filter.

In what follows, superscripts p and s are used to differentiate
primary and secondary cameras, while subscripts l and r are used
to denote local and remote. Since all IPUs operate identically,
consider an arbitrary IPU Ul with primary and secondary cameras
Cp

l and Cs
l . Let xl and Pl be the pose and error covariance esti-

mates of Cp
l and let local correspondences be denoted as zp

l ⇔ zs
l ,

where zp
l is measured in Cp

l and zs
l is measured in Cs

l . Addition-
ally, let Ur1 ,Ur2 , ...Urn be the set of IPUs with primary cameras
Cp

r1 ,C
p
r2 , ...,C

p
rn , for which remote correspondences have been mea-

sured, and let their respective pose estimates and error covariances



be xr1 ,xr2 , ...,xrn and Pr1 ,Pr2 , ...,Prn . Finally, we will denote remote
correspondences as zp

l,ri
⇔ zp

ri,l
, where zp

l,ri
is a set of feature mea-

surements in local primary camera Cp
l that correspond to a set of

feature measurements zp
ri,l

in remote primary camera Cp
ri .

The state vector X̂k that is estimated by our Kalman filter at
each timestep k aggregates the pose of Cp

l and the poses of the
Cp

r1 ,C
p
r2 , ...,C

p
rn

X̂k =


xl
xr1

xr2
...

xrn

 . (1)

Formulating the state vector in this way allows the filter to take
into account uncertainty in the poses of the Cp

r1 ,C
p
r2 , ...,C

p
rn since

their individual error covariances appear in the overall error covari-
ance P̂k estimated by the filter

P̂k =



Pl Pr1,l Pr2,l . . . Prn,l
Pl,r1 Pr1 0 . . . 0

Pl,r2 0 Pr2

...
...

...
. . . 0

Pl,rn 0 . . . 0 Prn

 . (2)

The individual error covariances of Cp
l and the Cp

r1 ,C
p
r2 , ...,C

p
rn

lie on the main diagonal while the covariances relating Cp
l to the

Cp
r1 ,C

p
r2 , ...,C

p
rn lie in the first row and column. The 0s everywhere

else result from the property that at IPU Ul , there are no measure-
ments relating the poses of the Cp

r1 ,C
p
r2 , ...,C

p
rn to one another.

A Kalman filter acts as a predictor-corrector. At each time step
the filter employs a time update and measurement update. These
are described in the following sections.

Time Update

The time update phase is responsible for propagating the filter state
X̂k−1 and error covariance P̂k−1 forward in time from the previous
step, to produce apriori state and error covariance estimates X̂−k
and P̂−k at time k. Because we assume the IPUs are primarily sta-
tionary (assumption 3 in Section 4.1) we employ “constant” motion
models, with the following corresponding time update equations:

X̂−k = X̂k−1

P̂−k = P̂k−1 + Q̂k.

The term Q̂k added to P̂k−1 models random variations between
filter updates. We allow a different process noise matrix for each of
the xl ,xr1 ,xr2 , ...,xrn , but assume no correlation between them. In
our framework, each IPU estimates its own process noise covari-
ance Ql using the technique described in [11].

Q̂k =



Ql 0 0 . . . 0
0 Qr1 0 . . . 0

0 0 Qr2

...
...

...
. . . 0

0 0 . . . 0 Qrn

 . (3)

Measurement Update

In the measurement update phase, the measurements Ẑk at time k
are used in conjunction with a set of measurement predictions Z̃k
to correct the apriori state X̂−k and error covariance P̂−k estimates
into aposteriori state X̂k and error covariance estimates P̂k. The
measurement update equations also require a measurement noise
covariance matrix R and a jacobian matrix Ĥk that indicates the
sensitivity of the measurements to changes in the state parameters.

The measurement update equations that are used are

Kk = P̂−k ĤT
k

(
ĤkP̂−k ĤT

k +R
)−1

X̂k = X̂−k +Kk

(
Ẑk− Z̃k

)
P̂k =

(
I−KkĤk

)
P̂−k .

Using the jacobian Ĥk, the measurement covariance R, and the
apriori error covariance P̂−k , the Kalman gain Kk is computed. The
Kalman gain is used to weight the measurement residual between
Ẑk and Z̃k to produce a correction to the apriori state estimate.

In our filter, the measurement vector Ẑk aggregates all measure-
ments in Cp

l into a single measurement vector

Ẑk =


zp

l
zp

l,r1

zp
l,r2
...

zp
l,rn

 . (4)

The measurement prediction Z̃k is generated by a mathemati-
cal function that predicts the measured values based on the current
apriori state estimate. In the case of local correspondences where
zp

l corresponds to zs
l , we use the function hl to produce a prediction

z̃p
l of zp

l using the following parameters

z̃p
l = hl

(
xl ;zs

l ,κ
p
l ,κs

l ,∆I ,S
)
, (5)

where xl is the pose of Cp
l , κ

p
l and κs

l are the intrinsics of Cp
l and

Cs
l , ∆l is the coordinate transformation between Cp

l and Cs
l , and S is

the shape of the surface.
The function hl performs the following operation. The pose xl of

Cp
l is used in addition to κ

p
l , κs

l , and ∆l to produce projection matri-
ces for Cp

l and Cs
l . Each of the zs

l is back-projected into a ray using
the projection matrix of Cs

l , and these rays are intersected with the
surface S to produce a set of surface points. The projection matrix
of Cp

l is then applied to each of these surface points to produce z̃p
l .

In the case of remote correspondences, where zp
l,ri

corresponds
to zp

ri,l
for remote IPU Uri , we use the measurement function hri to

produce z̃p
l,ri

, the prediction of zp
l,ri

,

z̃p
l,ri

= hri

(
xl ,xri ;zp

ri,l
,κ

p
l ,κ p

ri
,S

)
, (6)

where xl is the pose of Cp
l and xri is the pose of Cp

ri , κ
p
l and κ

p
ri are

the intrinsics of Cp
l and Cp

ri and S is the shape of the surface.
The operation of hri is analogous to that of hl . The poses xl

and xri of Cp
l and Cp

ri are used in conjunction with κ
p
l and κ

p
ri to

produce projection matrices for Cp
l and Cp

ri . Each of the zri,l is back-
projected into a ray using the projection matrix of Cp

ri , and each
of these rays is intersected with the surface S to produce a set of



surface points. The projection matrix of Cp
l is then applied to each

of these surface points to produce z̃p
l,ri

.

The vector Z̃k is then

Z̃k =



hl
(
x−l ;zs

l , . . .
)

hr1

(
x−l ,x−r1

;zp
r1,l

, . . .
)

hr2

(
x−l ,x−r2

;zp
r2,l

, . . .
)

...
hrn

(
x−l ,x−rn

;zp
rn,l

, . . .
)


. (7)

The jacobian matrix Ĥk indicates the sensitivity of the measure-
ments to changes in the state parameters. Since Ẑk is split between
local and remote correspondences, so too is Ĥk,

Ĥk =



∂hl(x−l ;zs
l ,...)

∂ X̂
∂hr1 (x−l ,x−r1

;zp
r1 ,l ,...)

∂ X̂
∂hr2 (x−l ,x−r2

;zp
r2 ,l ,...)

∂ X̂
...

∂hrn (x−l ,x−rn ;zp
rn ,l ,...)

∂ X̂


, (8)

Due to the dependence of hl on only Cp
l ’s pose and the depen-

dence of hri on only the poses of Cp
l and Cp

ri , Ĥk has the following
block structure

Ĥk =



Hl 0 0 . . . 0
Hl,r1 Hr1,l 0 . . . 0

Hl,r2 0 Hr2,l
...

...
...

. . . 0
Hl,rn 0 . . . 0 Hrn,l

 . (9)

where

Hl =
∂hl(x−l ;zs

l ...)
∂xl

(10)

Hl,ri =
∂hri(x

−
l ,x−ri

;zp
ri,l

, . . .)

∂xl
(11)

Hri,l =
∂hri(x

−
l ,x−ri

;zp
ri,l

, . . .)

∂xri

. (12)

The final piece of the measurement update equations to discuss is
the measurement noise covariance matrix R. We assume that mea-
surement noise is constant over time and independent across mea-
surements, but that the noise level in local and remote correspon-
dences may differ. The matrix R is then a diagonal matrix where the
diagonal entries corresponding to local correspondences have value
rl and diagonal entries corresponding to remote correspondences
have value rr.

5 IMPLEMENTATION

In this section we describe the distributed system that realizes the
computational framework described in Section 4.

5.1 Pre-Calibration
Before system operation, the internal calibration of each IPU and
the geometry of the display surface must be measured in addition
to obtaining an initial estimate of each IPU’s pose.

Our process for estimating the internal calibration of each IPU
consists of first calibrating the IPU’s stereo camera pair using the
Matlab Camera Calibration Toolbox. Once the cameras have been
calibrated, the projector calibration is estimated by projecting struc-
tured light patterns onto a non-planar surface and capturing the
projected patterns with the IPU’s cameras. The resulting images
are then decoded to produce three-way image correspondences be-
tween the cameras and the projector. The correspondences between
the cameras are then triangulated into 3D points to produce a set
of 3D-2D correspondences in the projector that is then used to cal-
ibrate the projector using the DLT algorithm [1].

Once the internal calibration of each IPU has been estimated,
they are arranged to form a display, and the display surface geome-
try and initial pose of each IPU is estimated. In this pre-calibration
process, we require that the camera field-of-view of each IPU over-
laps with the camera field-of-view of at least one other IPU. The
IPUs then take turns projecting encoded structured light patterns
while the cameras of all IPUs capture images. Decoding of these
structured light patterns allows precise inter- and intra-IPU image
correspondences to be obtained.

The intra-IPU correspondences are used to reconstruct a point-
cloud representation of the display surface from the perspective of
each IPU. The inter-IPU correspondences are then used to stitch
these individual reconstructions together, resulting in a point-cloud
representation of the display surface and an estimate of the pose of
each IPU together in a common coordinate system.

To construct a polygonal model from this point-cloud representa-
tion, we use the RANSAC-based plane-fitting algorithm described
in Quirk [12] that is robust against noise and outlying points result-
ing from false stereo matching. This algorithm extracts planes from
the point cloud representation of the display surface and intersects
them to produce a polygonal model of the surface.

5.2 Distributed Architecture
In order to continuously estimate its pose, each IPU must collect lo-
cal and remote correspondences and process them using its Kalman
filter. While local correspondences can be collected at each IPU
without the need to communicate with other IPUs, a mechanism of
obtaining remote correspondences is required. The system we have
developed accomplishes this through inter-IPU communication of
camera images over a local network.

We have developed a request/response architecture that allows
IPUs to operate asynchronously by requesting primary camera im-
ages captured at a specified time from other IPUs. In order to syn-
chronize the timestamps between cameras on different IPUs, we use
a camera synchronization box from Point Grey Research.

To facilitate the ability of IPUs to respond to requests for camera
images captured at a specified time, each IPU maintains a history of
recently captured camera images in what we call a camera buffer.
Each IPU maintains two camera buffers, one each for its primary
and secondary cameras. A special camera buffer thread is dedi-
cated to updating the camera buffer by replacing the oldest image
in the buffer with a new image from the camera whenever one is
available. In this way, a recent history of camera images is avail-
able at each IPU that can be searched based on timestamp when an
image request is received from another IPU.

5.2.1 Collection and Processing of Local Correspondences
The following process occurs asynchronously at each IPU to collect
a set of local correspondences. First, the latest image is requested
from the camera buffer of the primary camera, call this image Ip

l .
Once this image has been obtained, the corresponding image in time
Is
l from the camera buffer of the secondary camera is requested.

The next step is to obtain correspondences between Ip
l and Is

l .
We do this by first detecting a set of features in Ip

l using the
OpenCV implementation of Shi and Tomasi’s “Good Features to



Track” [16]. Correspondences for these features are then found in Is
l

using OpenCV’s implementation of KLT tracking [10, 3]. Finally,
each correspondence is checked against the epi-polar constraint be-
tween the primary and secondary cameras to yield the zp

l ⇔ zs
l .

Each IPU is provided with local access to its own fixed internal
calibration as well as the display surface model. In conjunction with
the zp

l ⇔ zs
l , this provides all necessary information to compute Hl

from Equation 10 as well as z̃p
l using Equation 5. We estimate the

jacobian Hl numerically using forward differences.

5.2.2 Collection and Processing of Remote Correspon-
dences

Remote correspondences are collected by requesting camera im-
ages from other IPUs that were captured by their primary cameras
at the same time as Ip

l . When such a request is processed by another
IPU Uri , its response includes not only the requested camera image
Ip
ri , but also its intrinsics κ

p
ri , current pose estimate xri , and apriori

error covariance (Pri +Qri).
Once the requested image Ip

ri has been received from another
IPU, correspondences between Ip

l and Ip
ri are measured. We do this

using an approach that first finds a set of correspondences between
Ip
ri and Ĩp

ri , a prediction of Ip
ri generated on graphics hardware using

the current estimated calibration of Cp
l and Cp

ri , and then transforms
these into a set of correspondences between Ip

l and Ip
ri . This ap-

proach greatly improves feature matching success for algorithms
like KLT when there are large perspective distortions between the
two views, as is likely the case for camera images from different
IPUs. More details on this technique can be found in [8].

Once the correspondences zp
l,ri
⇔ zp

ri,l
, between Ip

l and Ip
ri have

been measured, all information necessary to compute Hl,ri , Hri,l ,
and z̃p

l,ri
from Equations 11, 12, and 6 is available. We compute Hl,ri

using the closed-form solution in [7] and estimate Hri,l numerically
using forward differences.

5.2.3 Continuous Operation
Algorithms 2 and 3 summarize our implementation for collecting
and processing local and remote correspondences and Algorithm 1
illustrates how we have organized these processes into a continu-
ous calibration loop that is executed by each IPU at display time.
This loop is executed independently of the rendering in a separate
calibration thread. This calibration thread is implemented to run
concurrently with the rendering thread, but without causing render-
ing performance to drop below a certain framerate.

In our current implementation, each IPU broadcasts its image
requests to all IPUs in the display and processes each of their re-
sponses as they are received. We acknowledge this as a limiting
factor in the scalability of our system and discuss our plans to im-
prove this in Section 7.

In order to absorb network latency, each IPU collects and pro-
cesses local correspondences while it waits to receive image re-
sponses from the other IPUs. It then enters an inner loop where it
processes camera image responses and requests until all IPU’s have
responded or a timeout condition has been reached. This timeout
condition provides fault tolerance by allowing system operation to
continue should an IPU be unable to provide a response.

The final step is to update the Kalman filter to produce a new
pose estimate that is communicated to the rendering process to al-
low the new estimate to affect the image correction that takes place.

6 RESULTS

We have tested our framework for distributed cooperative pose esti-
mation using a two-IPU display and two real-time applications. The
first application displays a rotating panorama of real-world imagery
that contains many strong features, while the second application is
an open source flight simulator called Flight Gear, whose synthetic

Algorithm 1 CONTINUOUSPOSEESTIMATION

1: while true do
2: [Ip

l , Is
l ] = Get-Local-Camera-Images

3: BroadCast-Request(Ip
l .time)

4: Process-Local
5: repeat
6: if responseReceived then
7: Process-Remote;
8: end if
9: if requestReceived then

10: Process-Request
11: end if
12: until timeout ∨ allResponsesReceived
13: Update-Kalman-Filter
14: end while

Algorithm 2 PROCESS-LOCAL

1: Image Ip
l ,Is

l
2: Intrinsics κ

p
l ,κs

l
3: Extrinsics xl
4: CoordinateTransform ∆l
5: DisplaySurface S
6: zp

l = Detect-Features(Ip
l )

7: zs
l = Match-Features(zp

l ,Ip
l ,Is

l )
8: [zp

l ,zs
l ] = Verify-Epipolar-Constraint(zp

l ,zs
l , κ

p
l ,κs

l ,xl ,∆l)
9: [Hl , z̃

p
l ] = Compute-Filter-Mats-L(xl ,zs

l ,κ
p
l ,κs

l ,∆l ,S)
10: Add-Local-Correspondences-To-Filter(zp

l ,zs
l ,Hl ,z̃

p
l )

imagery contains far fewer features. Figure 1 shows the capability
of our system to continuously estimate the poses of both projectors
when both are moved simultaneously using the panorama applica-
tion. Similar results for the flight simulator application are shown in
Figure 5. Figure 6 shows a close-up of the projector image overlap
as the projectors are moved and recalibrated using our technique.
Since we currently do not re-estimate intensity blending masks for
IPUs after they have been moved, bright bands are visible in the
images where the projectors overlap.

Figure 7 shows the results of pose estimation over time for one
IPU in a two-IPU display using the panorama application. In this
sequence, captured over roughly four minutes, the IPU is moved
once about half-way through the sequence. We have extracted
frames from the corresponding video sequence that show the dis-
play configuration before, during, and after the movement of the
projector. Rotation of the panorama was disabled during this ex-
periment for comparison purposes. The ringing effect in the plots
as the IPU is moved is a result of the temporary violation of our

Algorithm 3 PROCESS-REMOTE

1: Image Ip
l , Ip

ri

2: Intrinsics κ
p
l ,κ p

ri

3: Extrinsics xl ,xri

4: DisplaySurface S
5: Ĩp

ri = Predict-Remote-Image(Ip
l , κ

p
l ,κ p

ri ,xl ,xri ,S)
6: F̃ = Detect-Features(Ĩp

ri )
7: zp

ri,l
= Match-Features(F̃ ,Ĩp

ri ,I
p
ri )

8: zp
l,ri

= Warp-Features(F̃ , κ
p
l ,κ p

ri ,xl ,xri ,S)
9: [Hl,ri ,Hri,l , z̃

p
l,ri

] = Compute-Filter-Mats-R(xl ,xri ,z
p
ri,l

,κ p
l ,κ p

ri ,S)
10: Add-Remote-Measurements-To-Filter(zp

l,ri
,zp

ri,l
,Hl,ri , Hri,l , z̃p

l,ri
)



Algorithm 4 PROCESS-REQUEST

1: Intrinsics κ
p
l

2: Extrinsics xl
3: Covariances Pl ,Ql
4: Time-Stamp t
5: I = Search-Camera-Buffer(t)
6: Send-Response(I,κ p

l ,xl ,Pl +Ql)

assumption that the IPU is stationary. Also, a slight drift over time
may be observed in the y component of the IPU’s position. Due
to the vertical ambiguity in the shape of our display surface, which
corresponds to the y axis, the y component of projector pose is un-
constrained in our experimental set-up.

7 DISCUSSION AND FUTURE WORK

We have presented a novel distributed calibration framework for
multi-projector displays where intelligent projector units interact to
cooperatively re-estimate the poses of all projectors during actual
display use. By making use of features in the projected imagery
itself, our technique can be applied to any type of projector and op-
erates without altering the projected imagery or affecting its quality.

We believe our technique is amenable to stereoscopic projection
as well. In this situation, the offset left- and right-eye images will
appear superimposed in the camera images, which would seem to
degrade the sharpness of features. We have simulated this effect in
a monoscopic two-projector display by overlapping the two projec-
tors as completely as possible and moving one of them slightly to
create a blurred-image effect. In all such experiments, the poses of
both projectors were successfully recovered. We attribute this to the
robustness of the feature matching algorithms used in our system.

While we have shown that our framework can operate success-
fully when feature-sparse synthetic imagery is projected, it is pos-
sible for calibration accuracy to be quite poor for some applications
where the imagery is too lacking in strong features for calibration
to be successful. In this case, since our computational framework
imposes no requirements on the origin of the image measurements,
it could be used in conjunction with techniques for embedding im-
perceptible patterns into projected imagery [4, 5, 6].

It is also possible that the configuration of measured features
cannot fully constrain the pose of one or more projectors. There
is such an ambiguity in the examples we have shown, where due to
the shape of the display surface, the vertical component of projector
location is unconstrained. When the pose of at least one IPU is con-
strained in a direction that may be unobservable for others, this will
be reflected in its error covariance matrix and will allow the IPU to
propagate constraints to other IPUs via remote correspondences.

When the poses of all IPUs are unconstrained in some direction,
as in our examples, the behavior of our technique is to estimate
poses for the IPUs that result in their projected imagery being reg-
istered together. While this is a visually appealing result, it may not
be consistent with the viewing position, resulting in an inability of
the system to correctly compensate for the shape of the display sur-
face. This could be remedied by continuously estimating the viewer
position with respect to one of the projectors or adding a fiducial to
the display surface and continuously estimating its position.

Our framework can impose a significant amount of computa-
tional overhead that competes with the rendering process for re-
sources. We would like to overcome these performance implica-
tions by fully integrating a computational unit with each IPU whose
sole responsibility is to estimate its pose. The rendering application
could then operate on a separate machine that periodically receives
updates as to the current pose of the IPU.

Except for additional computational load, we do not anticipate
difficulties in applying our framework to displays consisting of

more than two projectors. Since the cameras of any IPU are likely
to overlap with the cameras of only a small number of remote IPUs,
we believe it is possible to mitigate the additional computation load
in larger displays to a great extent by limiting the number of remote
IPUs that each IPU communicates with to those whose cameras
have an overlapping field-of-view.
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Figure 5: A two-projector display after both projectors have been moved (left) and after roughly ten seconds of calibration (middle,right).

Figure 6: A close-up of calibration accuracy in projector image overlap.
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Figure 7: Results of estimating the pose of a single projector as it is moved once over the course of four minutes. Frames from the corresponding
video sequence show the configuration of the display before, during, and after the projector is moved.


